

Black-Body Radiation II

- Basic black body equation: $E_b = \sigma T^4$
- ${\sf E}_{\sf b}$ is total black-body radiation energy flux W/m^2 or Btu/hr·ft^2
- σ is the Stefan-Boltzmann constant
 - σ = 5.670x10⁻⁸ W/m²·K⁴
 - $\sigma = 0.1714 \times 10^{-8} \text{ Btu/hr} \cdot \text{ft}^2 \cdot \text{R}^4$
- Must use absolute temperature
- Radiation flux varies with wavelength $-E_{b\lambda}$ is flux at given wavelength, λ

7

9

Northridge

Black-body Radiation Spectrum Energy (W/m²) emitted varies with wavelength and temperature E_{bl} is spectral radiation Units are W/(m²·μm) Meaning: fraction of black body radiation in range Δλ about wavelength λ

- Maximum occurs at λT = 2897.8 μm·K
 T increase shifts peak shift to lower λ
- Diagram on next chart

California State University Northridge

• Compute λT at λ_1 and λ_2 and find corresponding f_{λ} values in Table 6.2

- $-\lambda_1 T = (0.4 \ \mu m)(2478 \ K) = 991 \ \mu m \cdot K$
- $\lambda_1 T = (0.79 \ \mu m)(2478 \ K) = 1883 \ \mu m \cdot K$
- $f(\lambda_1 T) = 0.000289$ (interpolation in table) - $f(\lambda_2 T) = 0.04980$ (interpolation in table)
- Fraction in visible range = 0.04980 0.000289 = 0.0495 or about 5% in visible range for conventional lighting

19

Kirchoff's Law

- Absorptivity equals emissivity (at the same temperature)
- True only for values in a given direction and wavelength
- Assuming total hemispherical values of α and ε are the same simplifies radiation heat transfer calculations, but is not always a good assumption

```
California State University
Northridge
```

```
Effect of Temperature
Emissivity, ε, depends on surface temperature
Absorptivity, α, depends on source temperature (e.g. T<sub>sun</sub> ≈ 5800 K)
For surfaces exposed to solar radiation

high α and low ε will keep surface warm
low α and high ε will keep surface cool
Does not violate Kirchoff's law since source and surface temperatures differ
```

California State University Northridge

41

42

TABLE 12-3			TABLE 12-3		
Comparison of the solar absorptivity α_s of some surfaces with their emissivity ε at room temperature			Comparison of the solar absorptivity $\alpha_{\rm s}$ of some surfaces with their emissivity ε at room temperature		
Surface	αs	8	Surface	$\alpha_{\rm S}$	ε
Aluminum Polished	0.09	0.03	 Plated metals Black nickel oxide Black chrome 	0.92 0.87	0.08 0.09
Anodized Foil	0.14 0.15	0.84 0.05	Concrete	0.60	0.88
Copper		0.05	White marble Red brick	0.46 0.63	0.95 0.93
Polished Tarnished	0.18 0.65	0.03 0.75	Asphalt Black paint	0.90 0.97	0.90 0.97
Stainless steel			White paint	0.97	0.97
Polished Dull	0.37 0.50	0.60 0.21	Snow Human skin	0.28	0.97
California State University			(Caucasian)	0.62	0.97
Northridge From Çengel, Heat and Mass Transfer				43	